
PBUF: Sharing Buffer to Mitigate Flooding Attacks

Changting Lin∗, Chunming Wu∗, Yifei Tian∗, Zhenyu Wen† and Shouling Ji∗
College of Computer Science and Technology, Zhejiang University, China ∗

Email: {linchangting, wuchunming, tianyifei, sji}@zju.edu.cn

School of Informatics, University of Edinburgh, UK †
Email: zwen@inf.ed.ac.uk

Abstract—Software defined networking (SDN) is a promising
network architecture, which decouples the control plane and
data plane of a network. However, SDN opens some security
challenges, such as man-in-the-middle attacks, spoofing attacks,
flooding attacks and so on. In this paper, we focus on flooding
attacks which consume the switch buffer and controller resource
resulting in SDN framework resource overloaded. To prevent
SDN framework from flooding attack, we present a defense
approach called PBUF (Packet forwarding based on BUFfer shar-
ing), which pools the idle switches to mitigate threat issues. This
approach consists of buffer management and packet forwarding
modules. The buffer management module gleans the statistics of
incoming packets and then analyzes these statistics to estimate
the buffer size by network calculus. Considering that a lot of
table-miss packets will be generated and stored in buffer
when the flooding attack is happening, the packet forwarding
module is designed to forward these table-miss packets to
idle switches to prevent the switch or controller to be overloaded.
These table-miss packets will be buffered in idle switches
and then sent to controller in a limited rate by generating
packet_in messages. The simulation results show that PBUF is
effective and only introduces a little overhead in SDN framework.

Index Terms—Flooding Attack; Security; Performance; SDN

I. INTRODUCTION

Software defined networking (SDN) [1] has become one of

the important network architectures for simplifying network

management and enabling innovation in communication net-

works. There are some vulnerabilities and limitations on SDN

framework on account of the principle of separating control

plane from data plane. For example, the controller can access

the entire SDN, therefore it brings a disaster if the controller

is compromised. Moreover, the OpenFlow switch (data plane)

also attracts attacks by some potential security vulnerabilities,

e.g., a limited buffer size may lead to buffer overflow and

further consume the computation resource of the controller in

a short time when the switch is attacked by a large number of

new packets[2]. All of these new packets, with all or part

of header fields are spoofed as random values, should be

processed by controller in a short time. We call these new

packets table-miss packets.

Meanwhile, some researchers have started to explore the

security threats and propose some possible defense methods in

SDNs [2] [3] [4] [5]. AVANT-GUARD [3] enables the control

plane and the SDN network to be more resilient and scalable

against control plane saturation attacks. FloodGuard [2] is

an advanced defense approach of AVANT-GUARD, which

proposes a proactive flow rule method and designs an extra

cache to reduce the amount of packet_in messages and

therefore restricts the abilities of an attacker to be successful.

Occurring packet_in messages are stored in an extra cache

and served using a limited rate to further reduce the impact of

the attack. However, it is expensive to design an extra cache

for storing table-miss packets in FloodGuard. Moreover,

the way how to set a threshold, indicating attack occurs or

ends, is not detailedly discussed in FloodGuard.

In this paper, we attempt to defense the flooding attack

which causes the switch buffer overflowed and controller

overloaded attack. Unlike FloodGuard, our proposed defense

method does not require to design an extra cache for storing

packet_in messages and is attack driven. We leverage the

idle buffer in other switches to store table-miss packets.

These table-miss packets will be served in switches at a

limited rate to reduce the controller overloaded. In addition, we

use network calculus to estimate switch buffer size and further

trigger PBUF that avoid the buffer overflow. PBUF can retard

the time of the buffer overflow happening at least 5 times,

compared with normal OpenFlow solution. The retarded time

is increased with the increasing number of switches.

To summarize, the contributions of our paper include the

following:

• We design the PBUF, an attack driven and efficient

defense approach, for SDN networks to prevent switch

buffer overflow and controller overloaded attack by us-

ing buffer management and packet forwarding modules.

buffer management module estimates the buffer size and

trigger PBUF to defense attack.

• We implement PBUF algorithm in packet forward-
ing module, which can effectively forward these

table-miss packets to idle switches without overflow.

• We implement PBUF in SDN framework and test its

defense effectiveness and performance. The evaluation

results show that PBUF can achieve an efficient and a

low overhead when the flooding attack is happening.

The remainder of this paper is organized as follows. In

Section II, we will introduce the background including SDN,

network calculus, motivation and research challenges. Some

related works about SDN security will be introduced in

Section III. The design of PBUF is detailed in Section IV.

The implementation and evaluation of PBUF is introduced in

392

2017 IEEE 23rd International Conference on Parallel and Distributed Systems

978-1-5386-2129-5/17/31.00 ©2017 IEEE
DOI 10.1109/ICPADS.2017.00059



APP APP APP

Controller
Control Layer

S2

Sn

S1

S4S3

Northbound API

Southbound API

Fig. 1. SDN Framework.

Section V. At last we discuss and conclude our work in Section

VI.

II. BACKGROUND

A. Vulnerabilities of SDN

SDN [6] is currently attracting significant attention from

both academia and industry. The framework of SDN is shown

in figure 1. However, SDN indeed raises some open security

challenges. Then, we summarize some security issues accord-

ing to figure 1 as follows.

• Control layer. A compromised controller can compro-

mise the whole network since a centralized controller

is the centralized decision-making entity. This drawback

attracts different attacks such as DoS attacks [7]. Due

to the controller’s limit capacity, it becomes a bottleneck

[8].

• Data layer. A SDN compatible switch (e.g., OpenFlow

switch) is easy to be compromised [9]. Furthermore, a

SDN switch has to buffer incoming packets until the

controller issues flow rules. However, the switch always

has a limited number of flow tables and buffer size that

data plane cannot handle a saturation attacks [2] or traffic

uncertainty in OpenFlow data plane [10]. These attacks

subsequently lead to DoS attacks that render the data

plane in an unpredictable state.

• Application layer. The application is responsible for

providing a set of services and applications. The deployed

network applications can manipulate the behavior of

the network, and yet they could cause serious security

challenges [11]. Likewise, a large number of third-party

applications could result in serious security vulnerabilities

and challenges because of the lack of a well authentica-

tion for third-party applications[12].

B. Network Calculus

Network calculus is a mathematical study of queues and can

derive lower bounds (i.e., worst-case) of the system, including

backlog, delay and similar performance metrics [13]. Network

calculus particular focuses on quality of service guarantee

analysis. This theory uses the alternate algebras such as the

min-plus and max-plus algebra to transform complex network

systems into analytically tractable systems. To complete these

analysis, incoming traffic and service provides by a system are

all modeled as functions.

Network calculus holds promise as a valuable systematic

methodology for the performance analysis of computer and

communication systems [14]. In this paper, we hence leverage

network calculus to estimate switch buffer size in SDN.

Furthermore, a threshold is set, which is used to trigger PBUF.

For the sake of discussion, we use OVS (Open vSwitch) as

the default SDN switch. To avoid OVS buffer overflow, we

should trigger our approach before the buffer is running out.

Considering that network calculus is applied to find the lower

bound, the estimated value is always larger than the true value.

Therefore, the threshold value can be set as an OVS default

buffer size value (256 packets), that the overflow will not occur

in OVS when the flooding attack is coming.

C. Motivation

Studying on data plane and control plane, we find that

they all have bottlenecks. For example, 5406zl switch has a

limited TCAM size which only instals about 1500 OpenFlow

rules [8]. In addition, some SDN compatible switches can

only generate about 150 packet_in messages per second

(i.e., Pic8 Pronto) [15]. Moreover, Wang [15] found that the

bottleneck is at the control plane rather than at the data plane.

As discussed above, a huge number of table-miss
packets are waiting for processing while the flooding attack

is happening on account of the control and data plane has

a limitation capacity [2] [15]. Nonetheless, OpenFlow switch

cannot always offer sufficient switch buffer to store all of these

table-miss packets. Consequently, it would attract various

security threats, such as buffer overflow, sessions interrupting

and information leaking through side-channel attacks [16].

There are some solutions can handle table-miss pack-

ets when the buffer is full. Generally speaking, these

table-miss packets can be dropped, forwarded to con-

troller by packet_in messages contains whole packet or

directed to a subsequent switch by some methods [17] [18].

However, it may cause some significant issues. Firstly, some

legitimate requests will be interrupted if the packets are

dropped. Secondly, the controller has a limitation capacity to

process these table-miss packets in a short time. Thirdly,

these overflow packets may be directed to a subsequent switch

randomly [18] or by other methods like ECMP (Equal-Cost

Multi-Path) [19] [17], which will cause link congestion or

routing bottlenecks [20].

In this paper, we intend to design an attack driven defense

approach called PBUF, which can be triggered timely and

further prevent buffer overflow. Then, these table-miss
packets will be scheduled to idle switches and wait for pro-

cessing without causing bandwidth congestion. Considering to

prevent the controller overloaded attack, these table-miss
packets will be sent to controller by a limited rate.

393



D. Research Challenges

To realize PBUF, there are three challenges need to be

resolved:

• Estimating the available buffer of each switch in real time

without bringing performance decreasing.

• A threshold is needed which is used to trigger PBUF and

prevent buffer overflow.

• Efficiently distributing table-miss packets to desti-

nation, without causing new security issues and perfor-

mance decreasing.

To address the first challenge, we sample the incoming pack-

ets to effectively estimate the available size of the switches. For

the second challenge, we can aware before the switch buffer

size is going to be full, since the network calculus is applied

to find the lower bound [21]. To address the third challenge,

regarding the table-miss packets distribution process, we

propose the PBUF algorithm to efficiently forwarding packets

to idle switches without bringing network congestion and the

other networking security issues.

III. RELATED WORK

Some previous works had presented some flooding attacks

and defense methods in SDN. Mahout [22] uses traditional

statistic based aggregation solutions to prevent flooding attacks

in SDN. AVANT-GUARD [3] is presented to defense TCP

SYN flooding attack in SDN, which can reduce the amount

of data-to-control-plane interactions under DoS attacks, and

solve the communication bottleneck between the data plane

and the control plane. However, it only can defense against

TCP SYN flooding attacks. Wang et al. [2] presented a data-

to-control plane DoS attack in SDN and then introduced

FloodGuard, an efficient framework for defensing against

DoS attack by using migration agent and data plane cache.

The migration agent flooding attack and aims to protect

switches and controller when an attack occurs. An extra

cache is designed that stores proactive flow rules and caches

table-miss packets. FloodGuard is an updated version of

AVANT-GUARD, which can prevent SDN from more kinds of

DoS attack. Nevertheless, designing an extra cache for storing

packets is expensive and cannot be generalized to all SDNs

very well. Moreover, FloodGuard is attack driven approach

which is triggered by a threshold value. However, Wang

has not discussed the threshold value exhaustively in their

paper. Instead of implementing an extra cache to store these

table-miss packets, we propose a method that reduces the

burden of a single switch by forwarding packets from the over

loaded switches to idle switches. Moreover, PBUF use network

calculus to estimate the switch buffer size and set a threshold.

IV. DESIGN

In this section, we demonstrate a feasible approach called

PBUF, which offloads some stateful flow processing and con-

trol tasks directly inside the network switches, so as to reduce

the switch-to-controllers signaling overhead and the latency

shortcomings [23]. At first, we will glean the statistics of

INCOMING
PACKETS

Statistics
Collection

Buffer 
Sizing

Analysis

Fig. 2. Workflow of PBUF.

incoming packets. Then, network calculus is used to estimate

the switch buffer. Based on the approximation, we can forward

the packets to a right switch to mitigate switch overloading.

These packets were bounced several times in data plane before

finally processed by controller. The design of PBUF will be

represented in detail as follows.

A. Overview

PBUF consists of two modules: (1) buffer management
module and (2) packet forwarding module. The workflow of

PBUF is shown in figure 2.

The buffer management module contains statistics collection
and buffer sizing analysis. The buffer management module is

used to gather incoming traffic and estimate the buffer size

of switch. At first, the OVS gleans the statistics of incoming

traffic that the used buffer size can be estimated by network

calculus. Since PBUF is attack driven, we set a threshold value

which equals to OVS default buffer size. Thus, PBUF will be

triggered if the threshold value is not less than the OVS total

buffer size. Since the network calculus will estimate a lower

bound, the OVS will be alerted before the buffer overflows. In

the packet forwarding module, the table-miss packets are

forwarded to other switches by solving the optimization prob-

lem, which achieves low overhead and no congestion. Then

these packets will be sent to the controller as packet_in
messages by using a limited rate.

B. Statistics Collection

For the sake of collecting traffic information, we need to

access switches for reading the traffic statistics. OVS supports

three per-flow counters (packets, bytes and flow duration) for

collecting the statistics in switch. In PBUF, packet counter is

used to statistics gathering by default.

In this paper, OVS gathers these incoming packets statistics

and then analyses these statistics. Each OVS monitors its own

status instead of gathering these information by controller.

As a collateral benefit, possible resource depletion (e.g.,

CPU usage), especially of the controller, is minimized during

statistics collection. Furthermore, instead of monitoring each

packet in the network, PBUF samples the incoming traffic for

analyzing. Based on the collected statistics, the lower bound

of the available buffer of each switch is detailed, which is

detailed in next subsection. The available buffer will be used

for designing packet forwarding algorithm.

C. Buffer Sizing analysis

1) Definitions: We suppose that there are K switches in

SDN and with the same buffer size L. Furthermore, the

394



A(t)

D(t)
EV

EN
Ts

TIMES t

α (t)

Fig. 3. Backlog and delay features based on network calculus.

switch i (1 ≤ i ≤ K) serves ni hosts. Then, we assume

the used buffer size is Bused
i and the unused buffer size is

Bunused
i . Furthermore, we assume that all switches have the

same buffer size value. This assumption is relaxed. We make

this assumption only because it would be tidier to describe the

system. Consequently, we have:

B = Bused
i +Bunused

i . (1)

In the SDN paradigm, when a packet arrives at an edge

switch, according to the source address or source port or des-

tination address or destination port, the packet will match a re-

lated existing rule in switch’s TCAM and then forwarded it to

the next switch. If there are no rules matched (table-miss),

the packet_in message (including packet header and buffer

ID which are only a little fraction of a packet) will be sent to

controller when the switch’s buffer is sufficient. However, if

the buffer is running out, a packet_in message, containing

an entire packet, is to be sent to controller for processing.

The packets in switch buffer can be modeled as a queue

system, therefore network calculus can be applied to estimate

some related metrics. The packets’ arrival can be denoted as

an arrival process A(t), which denotes the total number of

packet arrivals in time slots 1, 2, ..., t. The cumulative arrival

process A(t) is a non-decreasing, integer valued function on

the non-negative integer Z+ such that A(0) = 0. The number

of packet arrivals at time t is denoted by a(t). Hence, we have

a(t) = A(t)−A(t− 1).
When t ≥ 0, ∃α(·), ∀s ≤ t, A(t) − A(s) ≤ α(t − s).

Therefore, we consider that α(·) is one of arrival curve of A(t).
In other words, the cumulative arrival process A(t) is said

to be (σ, ρ)-upper constrained, which is denoted as A(t) ∼
α(t), where α(t) = ρ(t− s) + σ. We hence call the function

α(t) is an envelope of the arrivals process A(t). As shown in

figure 3, the α(t) can cover the process A(t) and can be called

as an envelope of A(t). Furthermore, the burstiness and the

average sustainable rate of arrivals are represented by σ and

ρ, respectively. Moreover, we can see that the queue system

will be backlogged at t if A(t) > D(t).
2) SDN Switch Model: Our SDN switch model is shown

in figure 4, which is similar to [24]. We assume that the model

consists of cumulative table-miss packets arrival A(t) and

legitimate packets M(t), service curve S(t) and cumulative

packets departure D(t). The S(t) is denoted as the rate of

generating packet_in messages in switch. The M(t) is

S(t)
A(t) D(t)

Used Buffer

M(t)

Fig. 4. An analytical model of SDN switch .

the incoming packets from benign hosts, which contains a

little new packets and most matched packets. These matched

packets will be forwarded to related switch directly. Hence, a

little number of packets from M(t) will be buffered in switch.

3) Analysis of the SDN Switch: The table-miss A(t)
should generate packet_in events and send to controller,

which contain only a little fraction of the packet header and

a buffer ID to be used by a controller if the buffer size

is sufficient. The most part of packet still queue in buffer.

The A(t) will be buffered in a queue system waiting for

process. However, the M(t) is supposed to be a constant

value M . Moreover, the most part of M will not be processed

by server, which will be forwarded to destination directly.

Therefore, only m packets should be processed. Given a

system with service curve S(t) and upper constrained arrivals

with envelope α(t), the departure process D(t) can be derived

[21]. We have:

D(t) = sup
τ≥0
{α(t+ τ)− (S(τ)−m)}. (2)

Accordingly, the backlog (used buffer size) of switch i is

defined as [21]:

Bused
i = A(t)−D(t). (3)

Moreover, backlog is the vertical distance between the cu-

mulative arrival and departure functions. By insertion of the

definition of service curve and arrival envelope, a worst-case

bound for the maximal backlog Bmax can be derived [21]. We

have:

Bmax ≤ sup
τ≥0
{α(τ)− S((τ)−m)} = α� S(0)−m. (4)

where � is referred to as the min-plus de-convolution.

We hence can estimate the worst-case backlog bound in

a queue, which is caused by incoming packets. If the Bmax

reaches to the threshold B, we suppose that the buffer overflow

will occur. Thereafter, the packets must be forwarded to other

switches. The reason we set B as the threshold is that the

Bmax is an estimation of the worst-case which is larger than

the real value.

D. Packet Forwarding

We propose a mitigate defense approach, under which, a

switch treats each other switch as a node. When a node is

going to run out of its own buffer, the other nodes will support

their own idle buffer for buffer table-miss packets, thus

to mitigate the flooding attacks. Moreover, these packets will

be guided to other idle nodes by packet forwarding module.

Consequently, these packets will be distributed to the entire

network rather than being aggregated at a switch. In this way,

the idle resources in network can be used to mitigate attacks.

395



Accordingly, a new problem is raised: how to distribute

these packets to the other idle nodes efficiently. PBUF follows

the following principles: 1) the node’s buffer is not full, 2) the

node has a larger buffer size than the other, 3) the idle node
is nearest to the to-be-overloaded switch, 4) and the node
connects to more switches than the other. Furthermore, the

controller has the information of the topology, such as the

paths’ bandwidth. Thus, the attack effects will be limited to

minimal by PBUF, which aggregates the idle resource of the

entire network for defending against flooding attack. At the

first and second principles, we use network calculus to estimate

the buffer size and then encapsulate the estimated buffer size

and rate information in LLDP (Link Layer Discovery Protocol)

packets, which is used to discover the interconnected links

between the OVS in SDN. LLDP packets are sent regularly

via each port of a switch and are addressed to a bridge-filtered

multicast address, and are therefore not forwarded by switches,

but only sent across a single hop. For the third principle, each

node has the knowledge of neighbor nodes. For the fourth

principle, the controller has the knowledge of topology that

we can pre-store this topology information in OVS on account

of the topology is unchangeable.

The number of flooding packets will be large in a short

time that the distributing packets method focuses on speed

rather than effectively. Correspondingly, we present a PBUF

algorithm to solve this problem is a promising candidate as

it can favor large number packets, which rapidly chooses an

idle node to buffer these table-miss packets at each stage

and brings little overhead. Although the ECMP or random

method can also distribute these packets to entire network

quickly, it raises some issues, such as bandwidth congestion

and network loop. However, the calculated forwarding paths of

PBUF update frequently and can avoid link congestion, which

is updated according to the real time network state.

PBUF algorithm is “greedy”: we leverage this algorithm

to find a path efficiently that does not contain the to-be-

overloaded nodes and raise the other networking security is-

sue. Furthermore, based on this algorithm, each packet selects

approximate well node according to the neighbor nodes′ states

which update all the time. Therefore, all of the incoming

packets will be distributed to idle nodes to avoid bandwidth

congestion. The main iterative steps of greedy algorithm are

shown in algorithm 1. The algorithm 1 decides the input pkt
destination according to nodes and path resource level. If the

incoming pkt has only one available nodes to be forwarded,

which happens to be the previous nodes, this pkt would be

sent to controller. Otherwise, the incoming pkt will be sent to

dstNode(Lines:2-7). Then, a node will be chosen, which has a

lower buffer size(Lines:9-24). To avoid network loop, the node
where the pkt coming from would be exclude (Lines:10-11).

V. EVALUATION

In this section, we evaluate the effectiveness and perfor-

mance of PBUF. Firstly, we study the effectiveness of the

buffer overflow attacks. Then, we evaluate the effectiveness

of our proposed strategy with simulations. To investigate the

Algorithm 1 PBUF

Require: Current node: curtNode, input packet: pkt
Ensure: Destination node: dstNode
1: dstNode = null
2: if curtNode.nearByNodesNum == 1 then
3: if pkt received from curtNode.nearByNodes.first then
4: send to controller
5: else
6: dstNode = curtNode.nearByNodes.first
7: end if
8: else
9: for node in curtNode.nearByNodes do

10: if pkt received from node then
11: continue
12: else if dstNode == null then
13: dstNode = node
14: continue
15: end if
16: if node.bufferNum < dstNode.bufferNum then
17: dstNode = node
18: else if node.bufferNum == dstNode.bufferNum then
19: if node.nearByNodesNum > dstNode.nearByNodesNum

then
20: dstNode = node
21: end if
22: end if
23: end for
24: dstNode.bufferNum = dstNode.bufferNum + 1
25: end if

overheads of the proposed strategy, we evaluate the perfor-

mance on the controller.

A. Experiment Setup

Topology: We use Mininet to emulate the OpenFlow-

enabled network data plane and implement the buffer man-
agement module and packet forwarding module in OVS. For

sake of simulating PBUF, we generate a small topology (m
Core switches, n Agg switches, k ToR switches, and each ToR

switch has 2 hosts). For example, a topology is shown in figure

5 where m = 2, n = 3, k = 6. OpenDaylight is used as the

controller. Moreover, an application running on OpenDaylight

is used to guide the incoming packets to destination by

matching source and destination address. Besides, the features

of OVS and OpenFlow is 2.6.0 and 1.5.0, respectively.

Adversary model: For simulating flooding attack fea-

ture well, we implement the packet-level simulations. There

are some legitimated packets from benign hosts in SDN,

which contain table-match and table-miss packets.

For modeling the process packets more intuitively, we make

the assumption that the legitimated packets number is a

constant value in each time slot. Furthermore, the number

of table-match packets are much larger than the number

of table-miss packets in incoming legitimated packets.

We use Hping3 to generate and simulate TCP-based flooding

attacks that these flooding packets’ source and destination are

forged and random. Accordingly, each of incoming packet is

a new packet for OVS that the OVS should generate a new

packet_in message for each new packet. By default, the

buffer size of OVS are 256 packets. Further, one benign host

connects to the ingress OVS. The benign host will generate

396



Core m=2

Agg n=3

ToR k=6

Fig. 5. Data plane topology.

legitimate flows with a low rate, such as 30pps (packets per

second).

B. Flooding attack effectiveness

To present the effectiveness of the buffer overflow attacks

in SDNs, we simulate an attack process with an average attack

rate and record the ingress OVS buffer size under the flooding

attack. The used buffer size Bused
ingress of ingress OVS is used as

the metric which is represented flooding attack effectiveness.

To represent the effectiveness of flooding attack, the first

ingress OVS’s buffer size is recorded based on OpenFlow

scheme in a short period. Besides, we set the attack average

rate as 500pps and generate a simple topology, m = 10,

n = 11 and k = 22. Furthermore, we sample 10 packets

in 100 packets.

The variation of OVS buffer size under the flooding attack

based on OpenFlow scheme is shown in figure 6. We can

observe that the buffer size reaches at 256 packets (OVS’s

default total buffer size) at about 0.8s without any defense

approach. However, the duration of flooding attack maybe a

longer time than 0.8s that results in the OVS overflow.

C. Defense effects

To study the defense effects of the buffer overflow attacks

in SDNs, we also simulate an attacking process in SDNs with

an average attack rate. Furthermore, we use the holding time

as a metric to measure the flooding attack effectiveness based

on PBUF and OpenFlow scheme, respectively. The holding

time means that the SDN framework can hold when flooding

attack happen. In other words, the flooding attack happens at

t. The first OVS buffer overflow is at t′ under flooding attack.

the holding time hence can be represented as (t′ − t).
To measure the impact of the switch’s number on defense

effect, we vary m from 2 to 10, n from 3 to 11 and k from 6
to 22. The average attack rate is set as 500pps.

The defense effectiveness under 500pps is shown in figure

7. Comparing to the two holding times, we can observe

that PBUF can help with mitigating flooding attack. In this

experiment, we keep sending flooding packets until one of

OVSs buffer is overflowed. As we can observe from figure

7, the holding time in each topology without any defense

methods are almost same. Moreover, these holding times are

all short. In other words, the SDN framework without any

defense methods suffering from the flooding attack can be

256

B
uf

fe
r 

S
iz

e 
(p

ac
ke

t)

0

100

200

Time (secnod)

0 0.5 1.0 1.5 2.0 2.5

Fig. 6. The ingress OVS buffer size under the flooding attack based on
OpenFlow scheme

OpenFlow scheme
PBUF scheme

H
ol

di
ng

 T
im

e 
(s

ec
on

d)

0

5

10

15

20

25

Topology

(n=2, m=3, k=6) (n=3, m=4, k=8) (n=4, m=5, k=10) (n=6, m=7, k=14) (n=10, m=11, k=22)

Fig. 7. Holding time based on OpenFlow and PBUF scheme.

compromised in short time regardless of the topology. When

we implement PBUF in SDN framework, we can find that

these holding times are increased and the red bars is increasing

as the topology become larger. Because of the number of idle

switches will increase as topology become more larger. Hence,

the idle OVS’s buffer resource will be larger. The simulation

results show that PBUF can mitigate flooding attacks in SDN

with the proper configuration.

D. Defense performance

In this subsection, we evaluate the performance of the OVS

when PBUF is applied to defend the attack.

In forwarding packet module, we use PBUF to forwarding

packets. However, some other forwarding methods can also

be implemented in forwarding packet module. For example,

ECMP and random method. These two forwarding methods

are represented in algorithm 2 and algorithm 3, respectively.

To measure the performance, ECMP and random method will

be implemented in forwarding packet module as alternative

methods. The bandwidth usage and buffer overflow are all used

as metrics to measure the performance of packet forwarding.

Furthermore, we suppose that the overflow probability means:

numberoverflow/numberall. numberall means the number of

all incoming packets; numberoverflow means the number of

entire packet which overflow from the switch and the should

be forwarded to controller for processing. Moreover, we use

an open source tool iperf to measure the bandwidth.

We vary average attack rate from 0pps to 500pps. Further-

more, a topology (m = 10, n = 11 and k = 22) is generated.

And the duration of flooding attack is 20s.

Defense performance under different attack rates are shown

in figure 8. As shown in figure 8(a), we observe that OpenFlow

397



Algorithm 2 ECMP

Require: input packet
Ensure: Destination node
1: dstNode = null
2: if currnetNode.bufferNum <= threshold then
3: send to controller
4: else
5: dstNode = Hash(packet) {flow hashing}
6: end if

Algorithm 3 Random Method

Require: input packet
Ensure: Destination node
1: dstNode = null
2: if currnetNode.bufferNum <= threshold then
3: send to controller
4: else
5: dstNode = Random(packet)
6: end if

scheme suffer from the overflow as the attacking flow rate

increases. The switch’s buffer overflow are all 0 when there is

no attack. However, under attack, the OpenFlow scheme will

result in high overflow probability. Particularly, the overflow

probability is larger than 0.5 when the attack rate exceeding

220pps, and could be as high as 0.8 when the attack rate is

500pps. Meantime,we find that the other forwarding packet

methods will not bring OVS buffer overflow. We can observe

that the other three schemes are identical, which means there

are no overflow happening in OVS. For the ECMP method,

it statically stripes flows across available paths using flow

hashing. Hence, the table-miss packets will be forwarded

instead of asking for controller. Considering the random

method, it forwards these table-miss packets randomly

instead of asking for controller that there is no overflow in

switch. For our heuristic algorithm implemented in packet
forwarding module, it forward these table-miss packets

to next idle switch quickly. Hence, our heuristic algorithm

also can reach a forwarding efficiency level as the ECMP and

random method. Furthermore, PBUF also do not brings switch

buffer overflow. Therefore, the threshold works in time.

These forwarding packet methods all would affect the

bandwidth, such as link congestion, which are presented in

figure 8(b). We note that the OpenFlow bandwidth curve

decreases quickly as the flooding attack rate increases and it

will run out when the attack rate reach at 500pps. The random

method also causes bandwidth congestion. Unlike OpenFlow

method, ECMP and random methods consume about half of

bandwidth. Although ECMP forwards table-miss packets

quickly, it static maps of flows to paths does not account for

either current network state, with bringing about bandwidth

congestion issue. Also like ECMP, the random method does

not consider the current network state and chooses the paths

randomly. It hence brings about a bandwidth congestion issue.

PBUF also brings a congestion issue, whereas it is less than

the ECMP and random methods. A heuristic algorithm is

implemented in packet forwarding module, which not only

concerns path’s bandwidth but also concern the other issues.

ECMP
PBUF
Random
Openflow

O
ve

rfl
ow

 P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

Attack Rate pps

0 100 200 300 400 500

(a) Overflow.

PBUF
ECMP
Random
Openflow

B
an

dw
id

th
 (

kb
ps

)

0

200

400

600

800

Attack Rate (pps)

0 100 200 300 400 500

(b) Bandwidth.

Fig. 8. Defense Performance Under Different Attack Rates.

E. Overhead

This subsection mainly concerns on CPU usage of controller

and processing time of all incoming packets. With respect

to controller CPU usage, when under flooding attack, there

will be much more random source address packets arriv-

ing at ingress switch. Therefore, the controller needs more

CPU resource to process these flooding packets. In regard to

the processing time, it represents flooding packets in from

ingress OVS to destination is measured. Obviously, these

table-miss packets should take some time and wait in the

buffer for processing.

To measure the CPU usage, we generate a topology (m =
10, n = 11 and k = 22) and flooding attacks with average

80pps and 300pps, respectively. Besides, the duration of flood-

ing attack are all set as 20s.

From figure 9(a), firstly, we can find that, under a low

average rate 80pps, the flooding attack will all bring high

usages of controllers’ CPU at about 20s. A high CPU usage

means that the application in controller should process the

number of remaining packets is large. Since the controller

should process these packet_in messages and instal new

rules on OVSs by packet_out messages at the same time.

As a result of which, the CPU usage will decrease since all

new rules has been installed on OVSs. We can observe that

the two curves are almost similar, which means PBUF is not

triggered when the attack rate is 80pps.

We also observe the variation of CPU usage under an

average 300pps flooding attack in figure 9(b). At first, the

two CPU usages increase quickly and reaches to the peaks

in seconds. Then the two curves decrease to 0 at different

times. Moreover, we find that the peak of OpenFlow scheme

is higher than PBUF scheme. Besides, as PBUF limits the

rate of packet_in messages to controller, the peak values

of CPU usage are different.

From Table I, we can find that the average processing

times are almost identical under 80pps. Under the 300pps, the

OpenFlow scheme and PBUF scheme takes about 36.83s and

38.95s to process these incoming packets, respectively. Com-

paring to OpenFlow scheme, PBUF takes more time (about

2s) to process these incoming packets. Rather than the OVS

buffer overflow, the overhead is acceptable. Therefore, PBUF

mitigates flooding attacks with an acceptable low overhead.

VI. CONCLUSION

In this paper, we point out that, because of the limitation

of buffer resource in OpenFlow-enabled switches, SDNs are

398



PBUF Scheme
OpenFlow Scheme

C
P

U
 U

sa
ge

0

0.05

0.10

0.15

Time (second)

0 10 20 30 40 50

(a) CPU Usage Under 80pps.

PBUF Scheme
OpenFlow Scheme

C
P

U
 U

sa
ge

0

0.05

0.10

0.15

0.20

Time (second)

0 10 20 30 40 50 60

(b) CPU Usage Under 300pps.

Fig. 9. CPU Usage Under 80pps and 300pps Rate

TABLE I
THE AVERAGE PROCESSING TIME UNDER 80PPS AND 300PPS

Average Processing Time Under 80pps Under 300pps
OpenFlow 26.39s 36.83s

PBUF 26.51s 38.95s

vulnerable to the flooding attack, which aims to SDN devices.

Hence, we propose a defense approach which uses idle OVS

resource in the whole SDN framework to mitigate flooding

attack. We attempt to dynamically find idle resources when the

local resources are used up, to improve the resistance of the

network. Hence, we implement buffer management and packet
forwarding modules in OVS, respectively. The experiments

confirm that we can remarkably improve the SDNs capacity

of defending against the flooding attack. Basing on these

experiment results, we also provide theoretical guidance on

how to estimate OVS buffer size against buffer overflow. In

the future, we expect to find a method to differentiate the

attacking flows from legitimate ones in real time, so that we

can drop the attacking traffic before they enter further in the

network, thus to solve the problem fundamentally.

ACKNOWLEDGMENT

This work is supported by the National Key Research

and Development Program of China (2016YFB0800102,

2016YFB0800201, 2017YFB0803205), the National High

Technology Research and Development Program of China

(2015AA016103), the Key Research and Development Pro-

gram of Zhejiang Province (2017C01064, 2017C01055), the

Program for Key Science and Technology Innovation Team of

Zhejiang Province (2013TD20) and the Fundamental Research

Funds for the Central Universities.

REFERENCES

[1] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi, and
S. Shenker, “Software-defined internet architecture: decoupling architec-
ture from infrastructure,” in Proceedings of the 11th ACM Workshop on
Hot Topics in Networks. ACM, 2012, pp. 43–48.

[2] H. Wang, L. Xu, and G. Gu, “Floodguard: A dos attack prevention
extension in software-defined networks,” in 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE,
2015, pp. 239–250.

[3] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard: scalable
and vigilant switch flow management in software-defined networks,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 413–424.

[4] S. Shin and G. Gu, “Attacking software-defined networks: A first feasi-
bility study,” in Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking. ACM, 2013, pp. 165–
166.

[5] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for openflow networks,” in Proceedings of
the first workshop on Hot topics in software defined networks. ACM,
2012, pp. 121–126.

[6] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intel-
lectual history of programmable networks,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 2, pp. 87–98, 2014.

[7] J. M. Dover, “A denial of service attack against the open floodlight sdn
controller,” Dover Networks LCC, Edgewater, MD, USA, 2013.

[8] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” ACM SIGCOMM Computer Communication Review, vol. 41,
no. 4, pp. 254–265, 2011.

[9] C. Lin, C. Wu, M. Huang, Z. Wen, and Q. Cheng, “Adaptive ip mutation:
A proactive approach for defending against worm propagation,” in
Reliable Distributed Systems Workshops (SRDSW), 2016 IEEE 35th
Symposium on. IEEE, 2016, pp. 61–66.

[10] F. Chen, C. Wu, X. Hong, Z. Lu, Z. Wang, and C. Lin, “Engineering
traffic uncertainty in the openflow data plane,” in Computer Commu-
nications, IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on. IEEE, 2016, pp. 1–9.

[11] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, “Rosemary: A robust, secure, and high-
performance network operating system,” in Proceedings of the 2014
ACM SIGSAC conference on computer and communications security.
ACM, 2014, pp. 78–89.

[12] D. Kreutz, F. Ramos, and P. Verissimo, “Towards secure and depend-
able software-defined networks,” in Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking.
ACM, 2013, pp. 55–60.

[13] Y. Jiang, “A basic stochastic network calculus,” ACM SIGCOMM
Computer Communication Review, vol. 36, no. 4, pp. 123–134, 2006.

[14] F. Ciucu and J. Schmitt, “Perspectives on network calculus: no free
lunch, but still good value,” in Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architectures, and protocols
for computer communication, August, pp. 311–322.

[15] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “Scotch:
Elastically scaling up sdn control-plane using vswitch based overlay,” in
Proceedings of the 10th ACM International on Conference on emerging
Networking Experiments and Technologies. ACM, 2014, pp. 403–414.

[16] A. Canteaut, C. Lauradoux, and A. Seznec, “Understanding cache
attacks,” Ph.D. dissertation, INRIA, 2006.

[17] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” ACM
SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 465–
478, 2015.

[18] M. Calder, R. Miao, K. Zarifis, E. Katz-Bassett, M. Yu, and J. Pad-
hye, “Don’t drop, detour!” ACM SIGCOMM Computer Communication
Review, vol. 43, no. 4, pp. 503–504, 2013.

[19] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC Editor,
2000.

[20] M. S. Kang and V. D. Gligor, “Routing bottlenecks in the internet:
Causes, exploits, and countermeasures,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2014, pp. 321–333.

[21] Y. Jiang and Y. Liu, Stochastic Network Calculus. Heidelberg: Springer,
2008, vol. 1.

[22] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp. 1629–1637.

[23] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4 - programming protocol-independent packet processors.” Computer
Communication Review, 2014.

[24] C. Lin, C. Wu, M. Huang, Z. Wen, and Q. Zheng, “Performance
evaluation for sdn deployment: an approach based on stochastic network
calculus,” China Communications, vol. 13, no. Supplement, pp. 98–106,
2016.

399


